
I] Z; ZXihd[8addY <adl HZhig'Xi'dc I] ZgVen 9db WcZY I 1] DZj gdb j hXj aVg; aZXig'XVa Si'b j aVi'dc dc 7Yj a'h

Matthew Aitken SPT
Sophia Di Camillo SPT
Holly Hilbrandt SPT
Christine Kiefer SPT
Peter Leininger PT, PhD, Board-Certified
Clinical Specialist in Orthopedic Physical Therapy

EkZgk/ZI

Background

Blood Flow Restriction Therapy
Neuromuscular Electrical Stimulation

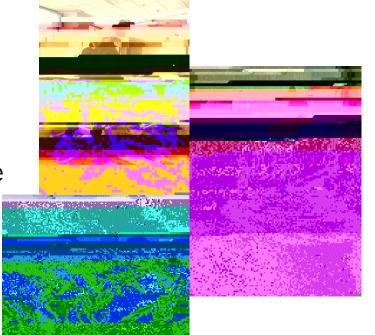
Purpose

Methods

Results

Conclusions

Clinical Relevance


8addY <adl HZhig'Xi'dc (8<H) I] ZgVen

Definition

The application of external pressure via tourniquets in order to occlude venous outflow while maintaining arterial inflow¹

Goal: achieving greater strength gains while lifting lighter loads¹

E ective and safe approach to stimulate muscle hypertrophy & strength gains in various clinical populations¹⁻⁵

DZj gdb j hXj aVg; aZXig^XVaSi^b j aVi^dc

Definition

Electrical currents applied through the skin to evoke muscle contractions²

E ective in development of hypertrophy during prolonged periods of immobilization, through promotion of muscle protein synthesis⁵

Published studies have investigated synergistic e ects of BFR and NMES on muscle strength and hypertrophy

No consensus on outcomes of both interventions used concurrently²⁻⁵

CZi]dYh

SZVgX]; c\~cZh

ProQuest Central

PubMed

CINAHL

ScienceDirect

SZVgX] Bか 作

Humans

Peer-reviewed

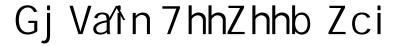
English

Years 2009-2019

Male or Female

Adults 18+

Intervention


Must include BFR+NMES with or without co-intervention

Outcomes

Must include muscle thickness and isometric strength

Study design

Any design

ARTICLE	MINOR SCALE SCORE*
Gorgey ³	20/24
Slyz ⁵	20/24
Natsume ²	19/24
Andrade ⁴	16/24

^{*}Ideal score is 16 for non-comparative studies and 24 for comparative studies

HZhj ah

Four studies were included

MINOR Scale scores ranged from 16-20 (avg: 18.75)

Samples varied from 7 to 20 subjects²⁻⁵ (n=44) who were either untrained, recreationally active, or individuals with incomplete SCI

BFR+NMES protocol was performed 2-5 times a week (10-32 minutes/session) for 2 or 6 weeks²⁻⁵

One study used upper extremity³ and three used the lower extremity^{2,4,5}

BFR inflation levels varied from 100 mmHg, 30% greater than resting systolic pressure, or 220 mmHg²⁻⁵

NVES frequency ranged from 20-100 Hz and pulse from 400-450 ms²⁻⁵

EjiXdb Zh

Study	Outcome Measures
Gorgey ³	 Cross sectional areas of ECRL and EDC via ultrasound Wrist extensor strength via Biodex Isokinetic Dynamometer Hand grip Grasp-release test
Slyz ⁵	 Mean di erences in quadriceps muscle mass via DEXA scan Isometric quadriceps strength measured via custom-designed leg strain measurement device with high-sensitivity strength gauge
Natsume ²	 Quad muscle thickness via ultrasound and thigh circumference using tape measure Isometric and isokinetic strength via Biodex system dynamometer
Andrade ⁴	 Unilateral isometric strength assessment via heel raise machine 3 trials of 5 second maximal voluntarossea heel oss sec achine

AZn < \cup Y \cup \h

No adverse e ects were reported in any of the four studies²⁻⁵

One study noted a *statistically significant increase* in muscle strength, but *not* muscle mass⁵

Two studies found *statistically significant increases* in the primary outcomes of muscle thickness $[(P<0.0014)^2; (P=0.003)^3]$ and isometric strength $[(P<0.054)^2; (P=0.048)^3]$

One study found *no statistical di erence* with use of BFR + NMES⁴

9dcXg h'dch & 9a'c 'XVaHZaZkVcXZ

9dcXaj h'dch

There was Iow to moderate evidence that BFR+NMES increases muscle hypertrophy and strength

Limitations

Small sample size

Varying parameters regarding BFR and NMES protocols, populations, and muscle groups

Inconsistent primary outcome measures

Future Research

Peter Leininger PT, PhD, Board-Certified Clinical Specialist in Orthopedic Physical Therapy

Tracey Collins PT, PhD, MBA, Board-Certified Clinical Specialist in Geriatric Physical Therapy

Renée Hakim PT, PhD, Board-Certified Clinical Specialist in Neurologic Physical Therapy

The University of Scranton DPT Faculty, Sta, and Students

Gj Zhi dch5